1.航模15cc汽油发动机哪里的最便宜

2.求发动机课程设计 直列四缸汽油发动机CAD图纸。。。高高分!

3.航模汽油直升机主轴齿与甲醇直升机主轴齿区别是什么,两机的区别又是什么?

4.汽油遥控车的发动机和航模汽油发动机的区别.

5.汽车发动机的总体结构与工作原理

汽油发动机模型_汽油发动机模型启动

航模发动机分电动机,甲醇内燃机,汽油内燃机,涡喷发动机。如果算上火箭模型的话,还要加上固体火药发动机。

电动机:电动机一般选用无刷电机,无刷电机相比有刷电机寿命更长性能更稳定。

无刷电机型号的选择:

无刷电机型号标称没有一个同一标准,目前比较通用的一种是内径标识法。即表识电机外转子内径,从一定程度上能够表明电机的线圈直径和匝数。新西达电机是国产比较便宜,性价比比较高的电机品牌,新手用足够了。比如“新西达2212 1400KV”即是一种电机的型号 1400KV在下面说明。

电机的KV值:电机输入电压每提高1v,电机空载转速提高的量,我们称为KV值。1400KV即说明电机空载情况下,加1V电压,转速为每分钟1400转,2V电压每分钟2800转,依此类推。

同型号电机(比如都是2212)KV值越大的电机,价钱越贵,拉力相对KV值小的电机越大(有限的提高,影响拉力最主要的因素还是电机的线圈直径、匝数,直观一点说就是内径。)

甲醇内燃机:比较传统的航模发动机。

从结构上分2冲程和4冲程两种。

结构上的不同就不多说了,查查初中物理课本就能知道。

但说性能上的不同:

在同等排量下,2冲程所能提供拉力更大,声音更嘈杂(不好听)

在同等拉力输出情况下,4冲程更省油,声音更好听些

还有一点非常大的不同:油门曲线不同。这是有能力买4冲发动机的人都买4冲的最大理由。

你那张纸拿个笔,画一个X轴和一个Y轴(只取第一象限,既只要X\Y轴上的数字都是正数),X轴表示你推油门杆的量,Y轴表示发动机的动力输出量。你觉得什么发动机最好控制?当然是油门杆量是1,动力输出也是1,油门杆是2,动力输出也是2,也就是说油门曲线是一条与X/Y轴都成45度的直线是最好控制的。但是很不幸发动机的油门曲线是一条曲线,4冲程发动机的油门曲线相比2冲程发动机的油门曲线更直一点,更接近最好控制的那条直线。

再说从排量上分。航模甲醇发动机排量一般有15、20、40、55、75、90等。这个“15、20。。。90”是表示排量是“0.015、0.02。。。0.09立方英寸”。按照发动机等级不同,配不同大小的飞机。72的四冲程发动机基本上和50的2冲程发动机动力差不多。

再说说航模甲醇发动机品牌:

国内:

三叶——价钱便宜,但是不适合新手使用,因为甲醇内燃机的调整较麻烦,新手调整的水平不到很可能调不出来,使内燃机无法正常运转。且自重相对较大。

国外(日本):

大名鼎鼎的OS——OS牌发动机价钱较高(55级2冲程发动机价钱大概是三叶46级2冲程价钱的两倍),调整相对较容易,新手在有人教的情况下,下点功夫调整能够使发动机正常工作。自重相对国产三叶较轻,工作稳定。

顶级品牌YS——YS四冲程发动机基本上就是F3A赛事的顶级发动机了,功率大、重量轻,YS63四冲程发动机输出功率甚至大于OS72四冲程发动机,性能稳定。

长寿发动机NEYA——也是很好的发动机,号称一个发动机能用三代人,因为活塞是陶瓷的,造价较高,性能稳定,寿命超强。

汽油内燃机:新兴起的汽油动力航模发动机,想玩大飞机、有钱的人的首选。原理、结构和甲醇机一样,但是汽油发动机常见的基本上都是2冲程的。汽油发动机的排量标称比甲醇嫩燃机的排量标称直观很多,一般有26CC、50CC、100CC、150CC、200CC

再说品牌:日本小松发动机是一个分不错的品牌,重量轻、功率大,我还没有在网上看见哪位网友说小松发动机不好的。

国内品牌很多很杂,口碑好些的就是美乐迪了。再有就是DLE。

汽油发动机不太懂,我主要是玩甲醇动力的。

涡喷发动机:价钱超贵,我看见过一个发动机,3W多,工作寿命50小时,超过50小时需返厂维护。一般人是受不了的。我是一般人,所以对涡喷发动机没有关注过。

上面讲的有好些是直接复制我以前回复的其他问题,懒得打字了。理论上讲应该不算抄袭吧?= o =

航模15cc汽油发动机哪里的最便宜

原因:

1.温差太小;

2.摩擦太大;

3.没给初始动能;

4.冷 热室的体积不能差太多。

延伸阅读:

1.斯特林发动机是英国物理学家罗巴特 斯特林(Robert Stirling)于1816年发明的,所以命名为"斯特林发动机"(Stirling engine)。

2.斯特林发动机是通过气缸内工作介质(氢气或氦气)经过冷却、压缩、吸热、膨胀为一个周期的循环来输出动力,因此又被称为热气机。

3.斯特林发动机是一种外燃发动机,其有效效率一般介于汽油机与柴油机之间。

求发动机课程设计 直列四缸汽油发动机CAD图纸。。。高高分!

非得使汽油的呀,我估计汽油机没那么低的,而且大多数都是四冲程的,如果你不嫌弃的话,就用甲醇的吧。如果你说的15CC是15级的话,淘宝上便宜,你打“航模甲醇发动机”绝对能搜出来。日本的15级甲醇发动机只卖42.8元(人民币),二冲程的。不知你是干什么用的,如果你是弄个模型最好连加长轴一块买,是50元如果你干别的,上面有,你自己看着办吧。我就买了一个,不错,带加长轴,火花塞,化油器等。若你买不到燃料的话,淘宝网上也有。你自己配的话,要把甲醇和蓖麻油按4:1配做润滑剂.我就说这么多。至于其他问题或怎么启动,你再自己想办法吧。

航模汽油直升机主轴齿与甲醇直升机主轴齿区别是什么,两机的区别又是什么?

直列四缸汽油发动机CAD图

本曲轴设计系统的每个部分都是自上而下,从前到后一脉相承的,数据的传递是本系统的关键所在。所以设计计算模块用类似属性向导的方式,由“上一步”、“下一步”和“取消”三个按钮来将几个模块连接起来,从前到后自成一体。

曲轴设计是以内燃机设计为基础的,所以首先必须进行内燃机的整体设计。单击欢迎界面上的“开始”按钮,系统就进入内燃机整体设计界面。此界面要求用户输入一些已知参数,如缸径、额定功率和额定转速等,为后来的曲轴设计奠定良好的环境基础和设计基础。接下来依次是“热力计算”界面(如图3所示)、“热力计算结果”界面(如图4所示)、“动力计算”界面(如图5所示)和“动力计算结果”界面(如图6所示),点击“完成”,结束本模块操作。

图3 热力计算参数输入界面

图4 热力计算结果界面

2.曲轴参数化设计模块

点击菜单上的“曲轴参数化设计”,可弹出下级子菜单“圆弧形曲柄臂”和“直线形曲柄臂”供用户选择。界面默认的单位是mm。

点击“圆弧形曲柄臂”,系统进入如图7所示的平衡重配置界面。该界面分为四个组合框:“参数”、“零件类型”、“材料”和“特性”。点击最后一行设置的“显示参数”按钮,便可在各编辑框中显示CA488曲轴的对应值。“参数”组合框是用户用来进行曲柄臂部分的参数化设计的,用户可根据自己的意愿来修改编辑框中的数值,直到满意为止。当用户改变选择的材料时,下面的“特性”框中的质量值就会发生变化。曲柄臂的形状复杂多样,都是不规则的,若想人工算出它的体积、重心和主惯性矩这些参数,相当的困难,需要做大量的工作,而借助于曲柄臂的模型特性就可以十分快捷地实现了。

图5 动力计算参数输入界面

图6 动力计算结果界面

修改和选择完界面上的参数后,点击“曲轴参数化”按钮,曲轴参数化设计用无模式属性页的形式,分别完成“前端”、“曲柄臂”和“后端”三个部分。用户可根据Pro/ENGINEER界面上所显示的相应的三维模型和界面上显示的对应部分的二维图形,来设计自己的图形尺寸,修改完后点击“更新”按钮,Pro/ENGINEER便可根据新输入的数值来再生三维模型。图8所示圆弧形曲柄臂参数化设计界面。

图7平衡重配置界面

图8 曲轴曲柄臂参数化设计界面

同样的,选择直线形的曲柄臂或选择八平衡重的模型都是类似的界面,只是调用的三维样板模型不同而已。这里不再赘述。

3.圆角疲劳强度校核模块

此模块中,最重要的是各系数的确定。圆角形状系数确定界面(如图9所示)是一个无模式属性页形式的MFC对话框。它包括应力集中敏感系数、形状系数、材料敏感系数、疲劳极限系数、尺寸影响系数和强化系数等。这样就可以不必再用人工查询的方式来确定相应的系数,为用户节省了大量的人力和时间,大大提高了设计效率。

点击“确定”进入如图10所示“圆角强度校核”界面。此步计算中需要使用前面参数化设计中确定的曲轴结构参数,在这里我们可以直接调用前面用户输入的数据,而不需用户重复输入,进入界面时就可以看到结果。

图9 尺寸影响系数确定界面

图10 圆角强度校核界面

点击“确定”按钮,系统进入校核模块的最后一个界面“圆角疲劳强度校核结果”。系统可以通过界面显示的前两个安全系数,可以算出最终的校核安全系数。然后点击“完成”,如果整个设计过程满足要求,那么就会弹出一个消息框“恭喜你,设计成功!”,如果设计的结果并不合理,就会弹出“设计不合理,请重试!”的提示信息。到这一步为止,用户需要进行的设计、计算、校核工作全部结束。接下来就是后续的完善工作了。

4.工程图输出模块

点击菜单栏中的第四项“工程图输出(G)”,经过短暂的反应过程,Pro/ENGINEER会自动进入工程图模式,此时界面中会出现如图11所示的二维图形和一个无模式的“工程图尺寸调整”对话框。

Pro/ENGINEER工程图界面中所显示的正是用户前面参数化设计的三维曲轴模型的三个视图:主视图、俯视图和侧视图,也就是一般设计要求给出的工程图纸内容。通过点击对话框中的“调整”按钮,用户可以将视图放大或缩小。另外,设计人员可以通过鼠标激活后面的工程图,进行任意的视图调整,例如单个放大、缩小等等,非常方便,和在Pro/ENGINEER中的使用情况一样。

还有一个很重要的问题就是工程图中尺寸的标准。点击对话框中的“显示尺寸”按钮,用户就可以看到系统在为视图标注尺寸的快速过程。标准过后的界面如图12所示。尽管标注看上去有些零乱,但的确做到了正确的根据三维参数化设计中用户的输入进行自动标注。至于如何更好地解决清晰标注和如何正确自动生成标题栏的问题,将是日后努力研究开发的一个方面。

图11 工程图输出界面

图12 标注尺寸的工程图

5.数据库链接模块

最后,为了系统的延续性和完善性,我们设计了数据库链接模块。点击菜单栏中的最后一项“数据库(S)”,系统进入如图13所示的数据库链接界面。整个界面中的参数是由内燃机设计中需要说明的主要环境参数和曲轴的基本结构参数构成的。

当用户完成了本步操作,就结束了整个曲轴设计系统的全部过程。也就是说,用户以前需要花费大量时间和精力才能完成的工作,我们现在进行按钮的点击和输入少量的数据就可以轻松完成了。这也是此系统开发的最大意义。

图13 曲轴设计系统数据库界面

三、结论

基于Pro/ENGINEER二次开发的曲轴设计系统实现了以下三个突破:

1.图表查询数字化的实现;

2.根据已知的三维模型,直接调用其体积、重心位置和主惯性矩;

3.根据模型输出工程图及尺寸自动标注的开发手段。

本曲轴设计系统界面友好,提示充分,操作方便、快捷,显著缩短了产品的设计周期,提高了设计效率。系统为后续过程提供了完备的信息源,具备一定的产品信息数据处理功能,为曲轴设计的系列化、标准化和通用化奠

汽油遥控车的发动机和航模汽油发动机的区别.

目前RC直升机大致按动力分为四种:二行程甲醇直升机、四行程甲醇直升机、汽油直升机和电动直升机。

1、 二行程甲醇直升机:这是一种以甲醇为燃料的二行程模型发动机为动力的通用性直升机。其发动机安装体积小、重量轻、马力大,是最受欢迎的RC模型发动机。

RC直升机有20级、40级及50-60级(20级发动机约为3.5cc,40发动机约为6.5cc,50发动机约为8cc,60发动机约为10cc)。20级直升机是最小的机种,一般作为初学者使用;现在初学者有向50/90级发展的趋势。

2、 四行程甲醇直升机:是最近几年推出的一种新产品,由于四行程发动机振动较大,选用这种机型的比较少,多为专业选手选用。

3、 汽油直升机:是由汽油作燃料的发动机,多为20cc级的动机汽油发动机。汽油发动机与二行程甲醇发动机相比,它转数较低,扭力比较大。所以它要通过齿轮比,设定飞机必要的转速,汽油机的燃料费用比较便宜。汽油直升机自身比较重,缺乏灵活性多为摄影,遥感等做为空中平台使用。

4电动直升机:使用电动机为动力的直升机,近年来随着动力电池改进这种直升机得到了较快的发展。

二、 RC遥控直升机的专门用语

1、 机体方面:

(1) 机壳:有全包象真机壳、半包机壳,所用材料为FRP、ABS树脂。

(2) 主侧板:动力部分、冷却部分、减速装置、尾转动机构等装置都安装在主侧板上面;其次,安装起落架、尾管、尾旋翼系统及机舱等。

(3) 发动机固定座:安装发动机的固定基座,可分成与机架一体及分离型两种。

(4) 尾管:支承尾部传动的部分。

(5) 起落架:用于起降的装置。

(6) 尾部支撑杆:用于防止尾管发生共振现象;是用来增加机架和尾管强度的部件。

(7) 尾传动轴:(尾传动皮带)将尾驱动装置所产生的动力传达到尾齿轮组的旋转轴,一般用皮带和钢丝(或碳杆)。

2、 动力转动部分:

(1) 主轴:从发动机送出的动力经过减速,最后传到主轴、旋翼头及尾部。

(2) 离合器:位于发动机减速装置之间,时而断开,时而咬合,一般使用的是离心式离合器。

(3) 主齿轮:RC直升机大部分都用金属、强化铝以及尼龙等工业树脂制品制成。

(4) 伞型齿轮:通常用于转换动力传送的方向。

(5) 同步皮带:是用啮合传动且可以同步转动,它的好处是重量轻,常用于直升机的尾传动方面。

(6) 尾齿轮箱:尾齿轮箱可将减速机构传来的力,传到尾旋翼旋转轴上,通常使用一组伞形齿将旋转轴做90°导向变化;其中也有利用皮带传动,此种情况下不需要伞形齿轮,只需滑轮就可以了,制造也非常简单。

3、 发动机冷却方面:

(1) 冷却风扇:遥控直升机一般用强制气冷的方式,由发动机驱动的冷却散热用的风扇称为冷却风扇。

(2) 消音器:用来降低发动机排气噪音的零件。

(3) 散热片:为了提高发动机的冷却效果,在汽缸头上安装了散热片,防止发动机过热。

(4) 发动机:为遥控直升机提供动力的装置称为发动机;大多是二行程发动机。

4、 操纵控制方面:

(1) 连动:如油门增加,螺矩跟着也增加,方向尾桨补偿右舵。

(2) 正螺矩:旋翼片的螺矩角为0°以上的角度。

(3) 负螺矩:旋翼片的螺矩角为0°以下的角度。

(4) 升降舵:对固定翼飞机而言,是升降舵;但对遥控直升机来说,则就是前进或后退。

(5) 副翼:在飞机上指翼,而对遥控直升机是指水平方向操纵时的左右方向。

(6) 方向舵:以主轴为中心,操纵尾桨的螺矩。

(7) 舵机固定座:用来安装舵机的台或座。

(8) 主旋翼:由旋翼头和旋翼片所组成。

(9) 尾旋翼:克服主旋翼反扭力的尾部旋翼。

(10) 螺矩臂:用以改变旋翼片的螺矩角度,通常位于旋翼片之前缘或后缘上。

(11) 倾斜盘:装有万向接头,可在360度内向任何位置倾斜。舵机首先使倾斜盘倾斜,然后再将此倾斜度传达至稳定翼或旋翼角,起到前、后、左、右的变化。

(12) 稳定翼:起稳定作用的小翼,跟旋翼片的翼型相同。

(13) 悬停飞行、上升飞行、下降飞行、水平飞行等不同的飞行动作。

汽车发动机的总体结构与工作原理

汽油模型车使用的发动机,偏功率,扭力。航模用发动机偏向转速。

汽油车发动机曲轴箱较大,所以输出的扭力更大,因需要离合器,所以体积较大。曲轴箱后部配有磁飞轮,与上方高压包配合组成自控制火花塞点火系统。

航模用汽油发动机曲轴箱较小,同排量转速较高。为了节约重量并且不需要离合器,所以体积较小,取消了磁飞轮点火系统,用独立供电的CDI电子点火系统,从而进一步减小体积与重量。CDI一般从接受电池取电或使用另外电池组独立供电。如果CDI没接电池,则无法启动。

最重要的一点,航模发动机不配手拉启动器,而车模都配手拉启动装置。

寿命没有共通性,都和使用环境、使用者操控手法、活塞环与缸套质量相关。与航模用车模用无关。

有一点,航模发动机多不配备空气滤清器,所以如果沙尘较多,死的会比车模快得多。车模一般都配了较好的空气滤清器。

发动机,又称为引擎,是一种能够把一种形式的能转化为另一种更有用的能的机器,通常是把化学能转化为机械能。(把电能转化为机器能的称谓电动机)有时它既适用于动力发生装置,也可指包括动力装置的整个机器.比如汽油发动机,航空发动机.

结构---

机体是构成发动机的骨架,是发动机各机构和各系统的安装基础,其内、外安装着发动机的所有主要零件和附件,承受各种载荷。因此,机体必须要有足够的强度和刚度。机体组主要由气缸体、曲轴箱、气缸盖和气缸垫等零件组成。

一. 气缸体

水冷发动机的气缸体和上曲轴箱常铸成一体,称为气缸体——曲轴箱,也可称为气缸体。气缸体一般用灰铸铁铸成,气缸体上部的圆柱形空腔称为气缸,下半部为支承曲轴的曲轴箱,其内腔为曲轴运动的空间。在气缸体内部铸有许多加强筋,冷却水套和润滑油道等。

气缸体应具有足够的强度和刚度,根据气缸体与油底壳安装平面的位置不同,通常把气缸体分为以下三种形式。

(1) 一般式气缸体其特点是油底壳安装平面和曲轴旋转中心在同一高度。这种气缸体的优点是机体高度小,重量轻,结构紧凑,便于加工,曲轴拆装方便;但其缺点是刚度和强度较差

(2) 龙门式气缸体其特点是油底壳安装平面低于曲轴的旋转中心。它的优点是强度和刚度都好,能承受较大的机械负荷;但其缺点是工艺性较差,结构笨重,加工较困难。

(3) 隧道式气缸体这种形式的气缸体曲轴的主轴承孔为整体式,用滚动轴承,主轴承孔较大,曲轴从气缸体后部装入。其优点是结构紧凑、刚度和强度好,但其缺点是加工精度要求高,工艺性较差,曲轴拆装不方便。

为了能够使气缸内表面在高温下正常工作,必须对气缸和气缸盖进行适当地冷却。冷却方法有两种,一种是水冷,另一种是风冷。水冷发动机的气缸周围和气缸盖中都加工有冷却水套,并且气缸体和气缸盖冷却水套相通,冷却水在水套内不断循环,带走部分热量,对气缸和气缸盖起冷却作用。

现代汽车上基本都用水冷多缸发动机,对于多缸发动机,气缸的排列形式决定了发动机外型尺寸和结构特点,对发动机机体的刚度和强度也有影响,并关系到汽车的总体布置。按照气缸的排列方式不同,气缸体还可以分成单列式,V型和对置式三种。

(1) 直列式

发动机的各个气缸排成一列,一般是垂直布置的。单列式气缸体结构简单,加工容易,但发动机长度和高度较大。一般六缸以下发动机多用单列式。例如捷达轿车、富康轿车、红旗轿车所使用的发动机均用这种直列式气缸体。有的汽车为了降低发动机的高度,把发动机倾斜一个角度。

(2) V型

气缸排成两列,左右两列气缸中心线的夹角γ<180°,称为V型发动机,V型发动机与直列发动机相比,缩短了机体长度和高度,增加了气缸体的刚度,减轻了发动机的重量,但加大了发动机的宽度,且形状较复杂,加工困难,一般用于8缸以上的发动机,6缸发动机也有用这种形式的气缸体。

(3) 对置式

气缸排成两列,左右两列气缸在同一水平面上,即左右两列气缸中心线的夹角 γ=180°,称为对置式。它的特点是高度小,总体布置方便,有利于风冷。这种气缸应用较少。

气缸直接镗在气缸体上叫做整体式气缸,整体式气缸强度和刚度都好,能承受较大的载荷,这种气缸对材料要求高,成本高。如果将气缸制造成单独的圆筒形零件(即气缸套),然后再装到气缸体内。这样,气缸套用耐磨的优质材料制成,气缸体可用价格较低的一般材料制造,从而降低了制造成本。同时,气缸套可以从气缸体中取出,因而便于修理和更换,并可大大延长气缸体的使用寿命。气缸套有干式气缸套和湿式气缸套两种。

干式气缸套的特点是气缸套装入气缸体后,其外壁不直接与冷却水接触,而和气缸体的壁面直接接触,壁厚较薄,一般为1~3mm。它具有整体式气缸体的优点,强度和刚度都较好,但加工比较复杂,内、外表面都需要进行精加工,拆装不方便,散热不良。

湿式气缸套的特点是气缸套装入气缸体后,其外壁直接与冷却水接触,气缸套仅在上、下各有一圆环地带和气缸体接触,壁厚一般为5~9mm。它散热良好,冷却均匀,加工容易,通常只需要精加工内表面,而与水接触的外表面不需要加工,拆装方便,但缺点是强度、刚度都不如干式气缸套好,而且容易产生漏水现象。应该取一些防漏措施。

二.曲轴箱

气缸体下部用来安装曲轴的部位称为曲轴箱,曲轴箱分上曲轴箱和下曲轴箱。上曲轴箱与气缸体铸成一体,下曲轴箱用来贮存润滑油,并封闭上曲轴箱,故又称为油底壳图(图2-6)。油底壳受力很小,一般用薄钢板冲压而成,其形状取决于发动机的总体布置和机油的容量。油底壳内装有稳油挡板,以防止汽车颠动时油面波动过大。油底壳底部还装有放油螺塞,通常放油螺塞上装有永久磁铁,以吸附润滑油中的金属屑,减少发动机的磨损。在上下曲轴箱接合面之间装有衬垫,防止润滑油泄漏。

三. 气缸盖

气缸盖安装在气缸体的上面,从上部密封气缸并构成燃烧室。它经常与高温高压燃气相接触,因此承受很大的热负荷和机械负荷。水冷发动机的气缸盖内部制有冷却水套,缸盖下端面的冷却水孔与缸体的冷却水孔相通。利用循环水来冷却燃烧室等高温部分。

缸盖上还装有进、排气门座,气门导管孔,用于安装进、排气门,还有进气通道和排气通道等。汽油机的气缸盖上加工有安装火花塞的孔,而柴油机的气缸盖上加工有安装喷油器的孔。顶置凸轮轴式发动机的气缸盖上还加工有凸轮轴轴承孔,用以安装凸轮轴。

气缸盖一般用灰铸铁或合金铸铁铸成,铝合金的导热性好,有利于提高压缩比,所以近年来铝合金气缸盖被用得越来越多。

气缸盖是燃烧室的组成部分,燃烧室的形状对发动机的工作影响很大,由于汽油机和柴油机的燃烧方式不同,其气缸盖上组成燃烧室的部分差别较大。汽油机的燃烧室主要在气缸盖上,而柴油机的燃烧室主要在活塞顶部的凹坑。这里只介绍汽油机的燃烧室,而柴油机的燃烧室放在柴油供给系里介绍。

汽油机燃烧室常见的三种形式。

(1) 半球形燃烧室

半球形燃烧室结构紧凑,火花塞布置在燃烧室中央,火焰行程短,故燃烧速率高,散热少,热效率高。这种燃烧室结构上也允许气门双行排列,进气口直径较大,故充气效率较高,虽然使配气机构变得较复杂,但有利于排气净化,在轿车发动机上被广泛地应用。

(2) 楔形燃烧室

楔形燃烧室结构简单、紧凑,散热面积小,热损失也小,能保证混合气在压缩行程中形成良好的涡流运动,有利于提高混合气的混合质量,进气阻力小,提高了充气效率。气门排成一列,使配气机构简单,但火花塞置于楔形燃烧室高处,火焰传播距离长些,切诺基轿车发动机用这种形式的燃烧室。

(3) 盆形燃烧室

盆形燃烧室,气缸盖工艺性好,制造成本低,但因气门直径易受限制,进、排气效果要比半球形燃烧室差。捷达轿车发动机、奥迪轿车发动机用盆形燃烧室。

四. 气缸垫

气缸垫装在气缸盖和气缸体之间,其功用是保证气缸盖与气缸体接触面的密封,防止漏气,漏水和漏油。

气缸垫的材料要有一定的弹性,能补偿结合面的不平度,以确保密封,同时要有好的耐热性和耐压性,在高温高压下不烧损、不变形。目前应用较多的是铜皮——棉结构的气缸垫,由于铜皮——棉气缸垫翻边处有三层铜皮,压紧时较之石棉不易变形。有的发动机还用在石棉中心用编织的纲丝网或有孔钢板为骨架,两面用石棉及橡胶粘结剂压成的气缸垫。

安装气缸垫时,首先要检查气缸垫的质量和完好程度,所有气缸垫上的孔要和气缸体上的孔对齐。其次要严格按照说明书上的要求上好气缸盖螺栓。拧紧气缸盖螺栓时,必须由中央对称地向四周扩展的顺序分2~3次进行,最后一次拧紧到规定的力矩。